Python

-

MUHAMMAD IMRAN SHABBIR
(Al / ML Engineer | Developer)

Installation

Downloading Python

+ For downloading python go on any browser go to
python.org and download python for your operating
system.

« Now install it and you will get the python Virtual machine
which will convert the code to byte code.

Downloading IDE

+ |DE stands for Integrated Development Environment.
* You can write and run your code using python virtual

machine.
« But the Conventional way is to use a IDE there are many

IDE’s like VS code, Pycharm, Jupyter.
« But we will use VS code.

Setting up and creating first program

« For setting up we have to go to VS code and in extensions
we have to install python and code runner.

+ Lets move forward and create our first program and that
will not be hello world.

Knowledge Orbit - Discover, Share, Evolve

Comments and Variables

Comments in python

« Comments are something that are ignored by the python
interpreter.

+ We have to use # for writing a comment in python.

« Multiline comments are not available in python but we can
achieve it by using Doc String “”” Multiline 7””

Variables in python

* In python Variables are used as a storage to store things in
python (we will see later what we have to store).
* You can write anything as a variable name.
Eg. Name = “Akarsh”
Age =12

Don’t use these

* You can not use numbers at variable start.
* You can not use spaces in variables.
* You should not use special characters in variables.

Knowledge Orbit - Discover, Share, Evolve

Naming Conventions

* You can write variables in python using 3 ways.

- Camel case - knowledgeOrbit
- Pascal case - KnowledgeOrbit
- Snake case - Knowledge_orbit

Knowledge Orbit - Discover, Share, Evolve

Data Types in python

What are Data Types

- Data types are the things we store in Variables and it
defines what data type variables are.

+ Python has built-in data types for different kinds of data.

Numbers\

Integer - All the numbers excluding decimal places and fraction.

Float - All the decimal numbers and fraction values are Float.

\Complex - Numbers with real and imaginary parts are complex.

S
/Strings

Strings - This is used to store anything in python, literally anything
that are available on your keyboard.
You have to use quotes to store anything and it will be
considered as string. You can use double Quotes (“”) or
single quotes (‘') to store both works same.

e

Boolean \

Boolean - Theres nothing much to say this is the data type which
will and always give the result of True and False.

AN

Knowledge Orbit - Discover, Share, Evolve

Strings and type conversion ©4

How Strings work

* You know what strings are but you must also know string
take more space than other data types like int, float etc.

« This happens because String stores every character with
their own Unicode.

« Unicode is a universal character encoding standard that
assigns a unique number (code point) to every character,
regardless of language.

- Like “A” unicode is 65 and “®” this emoji unicode is 128522,
you can check them by using ord() function in python and
convert them back using chr() function.

String Indexing

* You must have thought there are so many characters in a
string but can you access everyone.
* Yes thats possible using indexing. Indexing starts from 0 and
goes till the number of characters you have.
« eg - a = “Hello” print(a[0]) ==> output - “H”
* There is negative indexing as well and it starts from -1, but
the starting position is from the back of the string.

(11 ”n

* eg - a = “Hello” print(a[-1]) ==> output - “o

Knowledge Orbit - Discover, Share, Evolve

String Slicing

* You know how to access characters in string. But there are
slicing option as well.
« Slicing means cutting out a slice from string and this is also
done using index values.
* eg - a = “hello” a[1:4:1] ==> output “ell”
« So here we have start , stop and steps position and keep a
note if we use stop at 4 it will slice till 3 only.

Type conversion

» For understanding type conversion you have to look at these
4 things.

int() float() str() bool()

« There are more functions like this but these are 4 main
function, looking at these functions you can guess these are
used to convert one data type to another.

cega=12
a = str(a)
print(a) ==> “12" (a will be converted to string)

Knowledge Orbit - Discover, Share, Evolve

Type conversion types

« There are 2 types of conversion Implicit and Explicit.

Implicit

* In this python automatically
converts data from one data
type to another.

* You have already seen the
example before.

ceg-a=12
print(a/2)
output - 6.0
+ Clearly we had the data type

as int but after dividing python

automatically converted the
data type to float.

Explicit

* |In this we as a user use in build

functions to convert one data
type to another.
You have seen the example at
previous page.

int() - Integer
float() - Float
complex() -~ Complex
str() - String

list() _ List
tuple() _ Tuple

set() - Set

dict() - Dictionary
bool() - Boolean

« There are some explicit conversions that you might not
understand but further we will understand.

Knowledge Orbit -

Discover, Share, Evolve

Type conversion concepts

« Some important concepts of type conversions are you
cannot convert a character to a int() that basic watch the
video for more set of information.

« bool() converter turns everything to True and False but
which thing will be converted to true and which false. Lets
see.

* There are truthy values and Falsy values, and there are only
7 falsy values that means only 7 things will be converted to
false rest True.

0.0
False

(1%t

[
{}

+ All these values are falsy remaining will be converted to True.

Knowledge Orbit - Discover, Share, Evolve

Input and output

* You probably know till now, how to provide the output of the
code you have written and that is with print() function.

« There is no other functions to provide the result on the
terminal we just have to use print() function.

+ Now when providing the output we can use variables in print
statement using a formatted string as shown in the below
example.

name = input("Enter your name: ")
print(f"Hello, {name}! Welcome to Python programming.")

Input

« But the main question is how 1o ask user for some
information.

« For example there is a user and you want to ask the age of
that user, how can you do so, it's easy using input().

* Now the default data type of input is always string reason is
simple you can store anything in string.

* You have to manually convert the data type of input
statements.

Questions
+ *Important™ watch full video for clear understanding.

» Accept numbers from a user.
* Accept age from the user and print it.

Knowledge Orbit - Discover, Share, Evolve

Operators

What are operators

« Operators are symbols that perform operations on variables
and values. Python has several types of operators for
different tasks like arithmetic, comparison, logical operations,
and more.

+ Lets see every operators one by one.

Arithmetic operators

« Arithmetic operators perform mathematical operations like
addition, subtraction, multiplication, division, etc.
« There are 7 types of arithmetic operator.
+ addition - +
+ subtraction S

*

« multiplication i,

« division - /
« Floor division) //
« modulus %
« Exponentiation - >
- Eg-a=12

b=8

print(a+b)

Output - 20

+ See the video for proper explanation.

Knowledge Orbit - Discover, Share, Evolve

Assignment operator

Assignment operators are used to assign values 10 variables.
Python also provides compound assignment operators that
perform operations like addition, subtraction, multiplication,
etc.

A basic assignment operator is simple =.

Compound assignment operator

Compound assignment operator combines arithmetic
operations with assignment.

But first you have to understand how things work when we
reassign variables in python and also reassigning variables
with addition, subtraction etc.

To understand watch the video carefully.

Using compound assignment operators the reassigning
works better.

* += Add and assign

. -= Subtract and assign

¢ *= i} Multiply and assign

. /= - Divide and assign

e) Floor divide and assign

* %= modulus and assign

o = - Exponentiation and assign

Knowledge Orbit - Discover, Share, Evolve

Comparison operator

« Comparison operators, also called relational operators, are
used to compare two values.

« Comparison operators will always provide Boolean result that
is True and False.

« comparison operators are as follows

0 == - Equal to

S) Not Equal to

> Greater than

< - Less than

« >= Greater than or equal to
. <= - Less than or equal to

« Comparison operators will work with numbers but you can
use them with strings as well.
« Strings will be comparing the Ascii values of string.

Logical operators

* Logical operators in Python are used to combine multiple
conditions and return a Boolean result (True or False).
« There are 3 types of logical operator
- and - Return True if both condition are True
* or - Return True if at least one condition is True.
* not - Reverse the boolean value.
+ “important™ watch the full video for better understanding.

Knowledge Orbit - Discover, Share, Evolve

Trivial Questions

Answer True and False

Print(126 > 130)

print((456 == 456) != (235 == 236))

print(12 < 10 or 45 == 56 or 69 > 70 or 15 !=13)
print(True and bool(0))

Knowledge Orbit - Discover, Share, Evolve

Conditional statements

Conditional statements

« Conditional statements in Python allow decision-making by
executing different blocks of code based on conditions.
« Decision making can be understood with an example
eg - you will receive a number from the user if the number is
greater than 10 you will do task A and lower than 10 you
will do task B.

Number

Task A 4 © > Task B

+ Here the situation is simple Number will decide which task
will be executed.

+ That means now we will control the flow of our program
based on some conditions thats why these statements are

also known as control flow statement.

Knowledge Orbit - Discover, Share, Evolve

Types of conditional statements

« Generally there are 3 types of variation in conditional
statements.

+ For syntax you have to watch the video for better
understanding.

. if - Executes if the condition is True
« if-else - Executes if True, another if False
- if-elif-else - Checks multiple condition in sequence.

1if condition:

Code to execute 1if condition 1s True

g
it condition:
Code if condition 1is True

else:

Code if condition 1is False
g J

(if conditionl:

Code if conditionl is True
elif condition2:

Code if condition2 1is True
else:

Code if all conditions are False

Knowledge Orbit - Discover, Share, Evolve

Some Questions on Conditional

« The Great thing is you can use logical operators as well.
Q1. Accept two numbers and print the greatest between them.
Q2. Accept the gender from the user as char and print the

respective greeting message
Ex - Good Morning Sir (on the basis of gender)
Q3. Accept an integer and check whether it is an even number
or odd.
Q4. Accept name and age from the user. Check if the user is a
valid voter or not.
Ex- “hello shery you are a valid voter”
Q5. Accept a year and check if it a leap year or not (google to
find out what is a leap year)

If- elif ladder

* You cna also create if elif ladder using multiple conditions of
elif.
« For understanding solve this question
+ take the input of temperature in celsius.
. Below 0°C — "Freezing Cold %"
0°C to 10°C — "Very Cold @"
10°C to 20°C — "Cold ®"
20°C to 30°C — "Pleasant @"
30°C to 40°C — "Hot &"
Above 40°C — "Very Hot 2"

Knowledge Orbit - Discover, Share, Evolve

Loops in python

* Loops in Python allow us to execute a block of code multiple
times without rewriting it.

« Ok lets do one thing go to your VS code and print “hello
world” 100 times.

« Manually printing will take 100 code lines to print it. but using
loops we need only 2 lines to print 100 times, thats the
power of loops.

Types of loops

« There are 2 types of loops in python. For and While loop.

c\) vy

_/

+ For understanding both types of loop we well see a great
example- you have a bucket filled with water and an empty
bucket with a mug.

Knowledge Orbit - Discover, Share, Evolve

* In scenario 1 you have to transfer 4 mugs of water from 1

bucket to another.
 In scenario 2 you have to transfer all the water from 1st
bucket to another via mug.

Intuition of loops

* In first scenario you know the number of mugs to transfer
from one bucket to another.
« Here you know how many numbers of iteration you have
to go through, like you have to transfer only 4 mugs.
« So when you know the number of iterations you will use a
FOR loop.

* In the second scenario, you don't know how many mugs you
need to transfer, but you do know the condition that
determines when to stop.

« So when you don’t know how many iteration you have to
use but you know a condition that determines when to
stop you will use WHILE loop.

Knowledge Orbit - Discover, Share, Evolve

For loop

Range function

- Before understanding for loops you should know how range
function works.

« The range() function is used to generate a sequence of
numbers, which is commonly used in loops.

+ Syntax of range function is simple range(start, stop, steps).

« you have 3 points from where you want to start, till where
you want to stop and how many steps you want.

+ If you don't mention start point the default value will be 0 .
if you don’t mention the steps the default steps will be 1.
you have to mention the stop point otherwise the range
function will not work.

Loops for numbers

« For using loops with numbers you need the range function.
- Best way to understand is going with an example
* You have to print numbers from 1 - 5.
we will solve this question using for loop and range
function.

for i in range(1, 6):
print(i)

+ So this is how you use a for loop. watch the full video for
clear understanding of syntax.

Knowledge Orbit - Discover, Share, Evolve

Loops for strings

* Loops for strings work slightly differently. You can iterate
through a string in two ways:
a. Using index values.
b. lterating directly over the string.

+ |terating using the index values, Now we know that index
values are numbers and for numbers we again have to use
range function.

(1 1 \
a = ""Nature

for i in range(len(a)):

print(ali])

+ Here you iterated over the string using the index values for
better understanding watch the video.

« Second way is simpler we can directly iterate but using this
method will give you the direct access to the characters
instead of index values.

s N
a = "Nature"

for char in a:

print(char)

Knowledge Orbit - Discover, Share, Evolve

Break continue else

« Things written above are very important for loops.

+ Lets say you have this race track
and you have to complete 20 laps
but when you were completing the

o WEN BN BN BN BN NN N Em W g,

L)

~.----------—’

16th laps and it started raining now
you cannot complete the rounds.

* The above example simulate the example of your break
statement.

« The break statement in Python is used to exit a loop
prematurely when a certain condition is met. Once break is
encountered, the loop stops immediately, and control moves
to the next statement after the loop.

« The Continue statement skips one of the iteration and rest of
the iterations will run for understanding lets say you will not
run the 16th lap but all other lap will be there.

* You have seen the else statement used with if, but it can also
be used with loops. When else is used with a loop, it only
executes if the loop completes without encountering a break
statement. If break is executed, the else block will not run.

Knowledge Orbit - Discover, Share, Evolve

For Loop questions

« Accept an integer and Print hello world n times.

* Print natural number up to n.

+ Reverse for loop. Print n to 1.

« Take a number as input and print its table.

* Sum up to n terms.

+ Factorial of a number.

* Print the sum of all even & odd numbers in a range
separately.

+ Print all the factors of a number.

« Accept a number and check if it a perfect number or not.
A number whose sum of factors is equal to the number itself

Ex- 6=1,2,3=6
* Check wether the number is prime or not.

* Reverse a string without using in build functions.
« Check string is Pallindrome or not.
« Count all letters, digits, and special symbols from a given
string
Given: str1 = "P@#yn26at/&i5ve"
Expected Outcome:
Total counts of chars, digits, and symbols

Chars = 8
Digits = 3
Symbol = 4

Knowledge Orbit - Discover, Share, Evolve

While loop

While loop

You have previously taken the information of loops and you
also know conditional statements it is going to be easy for
you to understand this now.

The while loop repeats a block of code as long as a condition
is True. It is useful when the number of iterations is unknown
before execution.

while condition:
Code to execute

So there is not much that you have to understand about
while loop it also have break, continue and else.

Now you just have to find out which loop will be used on
what questions.

While loop questions

Separate each digit of a number and print it on the new line.
Accept a number and print its reverse.

Accept a number and check if it is a pallindromic number (If
number and its reverse are equal)

Create a random number guessing game with python.

Knowledge Orbit - Discover, Share, Evolve

Functions

What are functions

* Functions in Python group reusable code into a block that
can be executed by calling the function name. This helps
avoid repetition and makes programs modular and readable.

« There are many in-build functions in python like print(), input()
len() etc.

« But you can create your own function and they are called as
user defined functions. To make your own function you have
to use def keyword and then name the function. After this
you have to call the function using name() and paranthesis.

def OF
print("Hello, welcome to Python!")

greet() # Calling the function

Functions parameters and arguments

« First thing | want to talk about is parameters, parameters are
variables listed inside the function definition.
For making the function we have to accept inside the
parenthesis of the function.

def (name): # 'name' is a parameter
print(f"Hello, {name}!")

Knowledge Orbit - Discover, Share, Evolve

+ Arguments are the Values passed to a function when it is called.
+ For example you can say you have created the parameters
that are working like variables then we can pass the values to
our variables using arguments.

(def (name): # 'name' is a parameter

print(f"Hello, {name}!'")

kgreet(“Alice") # "Alice" is an argument

+ As you can see name is the parameter and Alice is the argument
that we passed to name. And you can pass N number of
parameters and arguments but they must be same like if you
have taken 3 parameters you have to provide 3 arguments
otherwise there will be error.

+ And another thing is first parameter, will always capture first
argument and so on. These arguments are called positional
argument.

Knowledge Orbit - Discover, Share, Evolve

Types of Arguments

* Now there are 3 types of argument that we can pass to
parameters. positional argument, default argument, keyword
argument, For understanding these we will first see examples.

(def add(a, b): K

return a + b

print(add(3, 5)) # 3 is assigned to 'a', 5 to 'b'
G

y,

def (name, age):

print(f"I am {name} and I am {age} years old.")
introduce(age=25, name="John")
(def (name="Guest"):)

print(f"Hello, {name}!")
greet() # Uses default value "Guest"
greet("Bob") # Uses "Bob"
§ y,

+ First example shows how positional arguments work.

« Second example shows hoe default argument works here if you
don’t pass any value still the function will run.

+ Last example shows how keyword argument works using this
you can pass values in any order.

Knowledge Orbit - Discover, Share, Evolve

Data Structures

In-build data structures

- Data structures are used to store, organize, and manipulate
data efficiently. Python provides several built-in data
structures.

« And for storing multiple values we will again use variables.

* Now in python we have 4 types of in-build data structure
List, Tuple, Dictionary, Set.

Custom data structures

* Now there are some custom data structures as well like
Stack, Queue, Linked List, Graph etc.

+ And around these data structures there are some algorithms
like searching algorithms, sorting algorithms.

* And this is why the study is called data structures and
algorithm.

* Lets be clear this python notes are not for the DSA this will
cover all the in-build data structures.

Knowledge Orbit - Discover, Share, Evolve

List Powers

+ Before starting we need to understand some of the
terminology.

« Mutable - Mutability refers to whether an object's value
can be changed after creation. And List allows this.

+ Duplicates - we know data structures are used to store
multiple values so duplicates means same value occuring
multiple time. List allows this.

« Ordered - List maintains ordered data structure maintains
the sequence of elements as they were inserted. This
means you can access elements using their position
(index).

« Heterogenous - List have heterogenous nature that means
we can have multiple data types inside the list.

List Basics

« First we have to know what is the syntax of list and how, to
create a list we have to use square brackets ([]).

fruits = [“apple", "banana", "cherry"]

—

(numbers = [10, , , |]

.

Knowledge Orbit - Discover, Share, Evolve

* Now list has Indexing and slicing and it is same as string if
you forgot how string indexing and slicing works watch the
video or revise the notes.

« The changes we saw in string and list is about mutability, we
can’t change the values of string. but we can of list.

(# Define a list

numbers = [10,)]

Modify the value at index 1 (2nd element)

numbers[1] =

Print the updated list
print(numbers) # Output: [10, 99, 30]

List Traversing and methods

* Now list traversing is also similar to string traversing it can
be looped using the index values and directly.

* Now list has some methods that are used to do many, and
don’'t worry if you are not sure what are methods, for now
just think they are like function, further we will see it clearly.

Knowledge Orbit - Discover, Share, Evolve

+ Now see some of the examples of the methods you will get
it what they are used for.

p
numbers = [5, 2, 9, 1, 5, 6] # Initial list

numbers.append(10) # Adds 10 to the end

numbers.insert(2, 15) # Inserts 15 at index 2

numbers.extend([20, 25, 30]) # Adds multiple elements at the end
numbers.remove(5) # Removes the first occurrence of 5

popped_item = numbers.pop(3) # Removes and stores the element at index 3
index = numbers.index(6) # Finds the index of 6

count_5 = numbers.count(5) # Counts occurrences of 5

numbers.sort() # Sorts the list in ascending order

numbers.reverse() # Reverses the list order

new_numbers = numbers.copy() # Creates a copy of the list

numbers.clear{() # Removes all elements from the list

« So these are some methods that are used in list .

Some Questions on List

« Print positive and negative elements of an List.
Mean of List elements.

Find the greatest element and print its index too.
Find the second greatest element.

Check if List is sorted or not.

Knowledge Orbit - Discover, Share, Evolve

Tuple Powers

- Before starting we need to understand some of the
terminology.

« Immutable - Tuples are not mutable you cannot change
the values of tuple

« Duplicates - You can have duplicate values in tuple there
are no restriction.

« Ordered - Set are ordered and you can access them
through index values.

« Heterogenous - Set also have heterogenous nature and
can have different types of data structure in tuple.

Tuple Traversing and methods

« Tuples are traversed in the same manner as List are
traversed.

« But remember tuples are like strings you can’t change
anything once it's made we can’t change them.

* Well the use case is not much in question solving but still you
have to understand it.

* Methods of tuple are:

t=(5 2,9, 1, 5 6) # Initial tuple
index = t.index(9) # Finds the index of first occurrence of 9
count_5 = t.count(5) # Counts occurrences of 5

* Yes there are only 2 methods of tuple one for finding the
index and other of counting the occurrences of an element.

Knowledge Orbit - Discover, Share, Evolve

Set Powers

+ Before starting we need to understand some of the
terminology.

« mutable - Sets are mutable you can change the values of
set.

« Duplicates - You cannot have any duplicate values in set

« that means every element will be unique.

« Unordered - Sets are unordered and you cannot access
them through index values.

« Heterogenous - Set is semi-heterogenous it can store
some data types like string, numbers, tuples but not
everything

How Set stores value in python

« Each value in a set is hashed using a hash function (hash() in
Python).

+ The hash is used as an index to store the element in memory.

« Since hashing does not maintain order, sets are unordered.

« Only immutable (hashable) objects can be stored in a set
(e.g., numbers, strings, tuples). Mutable objects like lists and
dictionaries are not allowed.

« See the video for more clear understanding.

Knowledge Orbit - Discover, Share, Evolve

Set Traversing

+ A set cannot be traversed using the index values cause it is
unordered and has no index.

« So many times it will give random values. you can watch the
video for complete understanding.

Set methods

* Now set methods are very powerful cause you don't have
any indexing you cannot change the values but set is
mutable so we use methods for this.

+ For adding and removing the elements you can use methods

as follows.

(s = {1, 2, 3}

s.add(4) # Adds an element to the set

s.remove(2) # Removes 2 (Raises an error if not found)
s.discard(5) # Removes 5 (No error if not found)

popped_element = s.pop() # Removes a random element

s.clear() # Removes all elements

_ y

+ Now these are some of the basic methods but sets also have
some special methods for performing some special
operations between 2 sets.

Knowledge Orbit - Discover, Share, Evolve

union_set = A.union(B) # {1, 2, 3, 4, 5}
intersection_set = A.intersection(B) # {3}
difference_set = A.difference(B) # {1, 2}

symmetric_diff = A.symmetric_difference(B) # {1, 2, 4, 5}
_ J

« So these are some other operations (Lrinca | 8) # tnion

Of sets that can be performed print(A & B} # Intersection
print(A - B) # Difference

between 2 sets. And we also have print(A ~ B) # Symmetric Difference

shortcuts for them.

+ Ok so we have seen these operations and while watching
the video you have seen a ven diagram approach as well
there are more methods you are open to try them and see the
working.

« But at the end set is not used that much in python lets
continue.

Knowledge Orbit - Discover, Share, Evolve

Dictionary

Dictionary Powers

+ Before starting we need to understand some of the
terminology.

* mutable - Dictionaries are mutable, meaning you can
change, add, or remove key-value pairs after creation.

* Duplicates - Keys must be unique, but you can have
duplicates in values.

* Order - Dictionary follows insertion order.

+ Heterogeneous — A dictionary can store different types of
keys and values, like integers, strings, lists, or even
another dictionary.

Dictionary syntax and working

« Now we know we have to use key and value pairs to store
values in dictionary.
« And the keys in dictionary acts like index values that we use

in List.
student = {"name": "John", "age'": }
print(student["name"]) # Output: John

« Again telling we can perform CRUD(create, read, update,
delete) operations on values but not all on keys cause the
keys cannot be changed after creation.

Knowledge Orbit - Discover, Share, Evolve

Dictionary traversing

+ We can traverse both keys and values in dictionary, but
default loop is set on keys and you can access the values
because of keys.

« So technically you can traverse on both keys and values at
the same time.

numbers = {1: T e , 4 }

for 1 in numbers:

print(i, ":", numbers[i])

* Do see the video explanation for better understanding.

Dictionary methods

« There are not many dictionary methods lets see the working
of some.

« as you all know we can use help(dict) for getting the
information of all the methods available.

Dictionary Questions

« Write a Python script to merge two Python dictionaries.

+ Write a Python program to sum all the values in a dictionary.

« Count the frequency of each elements

« Write a Python program to combine two dictionary by adding
values for common keys.

Knowledge Orbit - Discover, Share, Evolve

Exception Handling

Errors

« Errors occur due to mistakes in the code that prevent it from
running. These can be syntax errors or logical errors.

Syntax error

Grint("Hello World" # Missing closing parenthesis]

« Now this above code will give the error of syntax.

* |Indentation Errors

def ()
print('"Hello") # No indentation

* You already know what is indentation and if you don’t
follow it you will get the error.

« There is one more tab error when you mix tabs and
spaces.

« These errors cannot be handled. but what can be handled
are exceptions.

Exceptions

- Exceptions are unexpected events or errors that occurs
during the execution of a program, which disrupts the normal
flow of the program.

Knowledge Orbit - Discover, Share, Evolve

Exceptions

+ Exceptions are unexpected events or errors that occurs
during the execution of a program, which disrupts the normal
flow of the program.

print("Start")
print(10 / @) # Raises ZeroDivisionError

print("End") # This line will never run

* Now this is a ZeroDlvisionError and can be counted as
Exception and because of this exception the next line cannot
be executed.

+ Like this there are many other exceptions just leave the three
errors we saw at start otherwise others are exceptions.

« And the good part is we can handel them lets see how.

Knowledge Orbit - Discover, Share, Evolve

Exception Handling

Keyword

Purpose

« So these are the keywords that we use and all these
keywords has their separate purpose as mentioned.
« To see the code part see the video.

Knowledge Orbit -

Discover, Share, Evolve

e D0

File Handling

What are files

« You all know what are files any name with an extension is
file.

+ Now that extension can be .py, .txt , . mp3 etc. and when we
want to handle these files we will use file handling.

File handling

« File handling means Creating, Reading, Updating,
Deleting(CRUD) operations that we can perform in files.

* Now lets see how to perform these operations in python.

+ We have to use open() function to open a file in python.

* Now there are multiple modes to open the file.

Knowledge Orbit - Discover, Share, Evolve

What are files

« You all know what are files any name with an extension is
file.

* Now that extension can be .py , .txt , . mp3 etc. and when we
want to handle these files we will use file handling.

File handling

« File handling means Creating, Reading, Updating,
Deleting(CRUD) operations that we can perform in files.

* Now lets see how to perform these operations in python.

+ We have to use open() function to open a file in python.

* Now there are multiple modes to open the file.

Knowledge Orbit - Discover, Share, Evolve

Syntax

e ™
file = open("myfile.txt", "r")

print(file.read()) # Read entire file

print(file.readline()) # Read one line

print(file.readlines()) # Read all lines into a list

file.close()

\ J

« This is the basic syntax through which we can open a text
file and the ‘r’ there represents read mode and there are
multiple modes like this as mentioned before. see the video
for other modes as well.

+ Now after working you have to close the file manually but for
this we have with keyword.

with open("data.txt", "r") as f:
content = f.read()
print(content)

- Now Lets create a basic file handling project.

Knowledge Orbit - Discover, Share, Evolve

OOPS in python

What is OOPS

+ For understanding oops first lets see what we were doing in
python for creating a program of addition we first use
imperative approach.

a =
bh =
print(a + b)

« This approach is simple just use 2 variables and add them
one problem with this is you have 10 make 2 other variables
for adding 2 other numbers.

+ Next approach is using functions to add 2 numbers this is
functional approach.

~ ~
def (a, b):

return a + b

print(addition(12, 12))

print(addition(45,)
Q

+ Here the good thing is we can add multiple numbers without
using multiple variables.

Knowledge Orbit - Discover, Share, Evolve

What is OOPS

« And our next approach is object oriented programming
approach.

-
class

def (self, a, b):
print(a + b)

obj = Addition(12, 12)
_

« OOPS (Object-Oriented Programming System) is a
programming paradigm based on the concept of "objects”,
which can contain data (attributes) and code (methods).

« | know it is tough to understand right now but it will be easy
after learning there are many concepts that we have to learn
like classes, objects , Encapsulation, inheritance,
Polymorphism, etc. So lets start.

Knowledge Orbit - Discover, Share, Evolve

Classes in OOPS

Classes

« A class is like a blueprint or template for creating objects.
« Think of a class like the blueprint of a house. It defines what
the house should have (rooms, windows, eic.) but doesn’t

build the house. An object is the actual house built using that
blueprint.

Syntax of class

+ A class is also created with a basic keyword class and a hame
in front of it.

class -
[brand = "Toyota" }

+ Creating a class is super simple now lets see what is inside

class. There are 2 types of things inside class Attributes and
Methods.

« Attributes - Variables defined inside the class are Attribute.
+ Methods - Functions defined inside a class are Methods.

s

clas:

species = "Dog" # Attribute

def nd(self): # Method
print("Bark!")

Knowledge Orbit - Discover, Share, Evolve

Accessing attributes and methods

+ A class is initialised only one time when we first run the
program. and for accessing the attributes and methods we

have to first access the class and then attributes and
methods.

type = "Cat" # Attribute

def (self): # Method
print{"Meow!")

Directly accessing attribute and method using the class
print(Animal().type) # Access attribute
Animal().sound() # Call method

-

Knowledge Orbit - Discover, Share, Evolve

Objects in OOPS

Objects

BAG
FACTORY

REQUIREMENT

+ For understanding objects first look at this example you have
a bag factory and that factory requires material of the bag,
number of zips you need in that bag and number of pockets
you need in your bag.

« So this is a kind of a blueprint and using this blueprint
Reebok, campus and some other companies provided
their requirements and created their bags.

« Thus these companies became objects who created their
bags using the blueprint.

Knowledge Orbit - Discover, Share, Evolve

Object syntax

* It is very easy to create an object you just have to call the
class inside a variable and that variable becomes an object.

* The object has all the powers of a class therefore a class
object can access attributes and methods of a class.

Creating an object
f = Fruit()

Accessing the attribute

kprint(f.name}

Knowledge Orbit - Discover, Share, Evolve

Constructor

What is constructor

* You saw last example where we wanted material, zips and
pockets from the user to create an object.

- If we talk about a function we can ask the user using
parameters, but in class we can’t have parameters for that
we use constructor.

+ A constructor is a method that runs automatically when we
call a class and this constructor function will target the
objects location.

e N
class]

def (self, name):

self.name = name # Instance attribute

Creating an object with a value
s = Student("Riya")

Accessing the attribute

int(s.nam
_prin (s.name)

» To target the objects location we use self keyword.

+ For clear understanding watich the video carefully. we will
create the bag factory and will create multiple objects where
self will target the specific locations of the objects.

Knowledge Orbit - Discover, Share, Evolve

Attributes and Methods

Types of Attribute

- Class attribute - A normal variable created inside a class is
is a class attribute and thats it.

+ Instance attribute - A attribute created using an instance like
self.name, self.age etc. It is known as
instance attribute.

-
class
wheels = # Class attribute
def (self, color):

self.color = color # Instance attribute

Types of Methods

 Instance Method -An instance method Works with instance
(object) of the class. This method can
access and modify instance attributes.

class 0
def (self):

print("This is an instance method")

Knowledge Orbit - Discover, Share, Evolve

» Class Method - This method works with the class itself it will
not target the instance (object). we have 1o
use @classmethod decorator for creating the
class method and it takes cls as their first

parameter.
class
@classmethod
def (cls):

print("This is a class method")

- Static Method - This method doesn’t access class or instance
directly it also uses a decorator @staticmethod
it just acts like a regular function placed inside a

class.
class
@staticmethod
def ():

print("This is a static method")

Knowledge Orbit - Discover, Share, Evolve

Inheritance

Inheritance

+ In general terms Inheritance means property or any possession
that comes to an heir.

)

\

Property @.—

e

\

+ But our python neither have an old man or a child then
inheritance works where 7

+ It works between classes.

+ Inheritance allows a class (child class) to inherit properties and
behaviors (attributes and methods) from another class (parent
class).

+ Benefits of using inheritance is :

+ Code reusability
+ Organized structure
« Easy to maintain and extend

Knowledge Orbit - Discover, Share, Evolve

Syntax of Inheritance

+ Syntax is very simple just like you take parameters in functions
here you will take parameters but those parameters will be

classes.

-
class

def (self):
print("I can speak!")

class (M

pass

* Now the inherited class has all the powers of parent class that
means all the methods, attributes can be accessed by the

instance of child class as well.
Constructor in Inheritance

+ Lets say you have created a parent class with a constructor
function inside it and then this class is inherited by another class
then the constructor function of parent class will work for the

child class as well.

-
class

def (self, name):
self.name = name

class ():
def (self):
print(f"My name is {self.name}")

Knowledge Orbit - Discover, Share, Evolve

* Now lets say you need a new parameter in your child class you
have to create a constructor function for your child class but the
parameters that can be initialized in the parent class will be
initialized using the super() function. Super function will target the
parent class.

()
class :
def (self, name):

self.name = name

class ():
def (self, name, age):
super().__init__(name)
self.age = age

def (self):
print(f"My name is {self.name}, and I am {self.age} years old.")

Types of Inheritance

« Single Inheritance
+ All the inheritance we saw above was single level.
« Multiple Inheritance
* Multiple Inheritance means there will be 2 parent classes and
only 1 child class and the child class will inherit all the
attributes and methods of both parents.
* Note - The constructor function will be inherited of the first
class that has been Inherited. This is MRO(Method Resolution
Order) followed by python.

Knowledge Orbit - Discover, Share, Evolve

(%Lass ! N
def (self):
print("Coding")
class :
def (self):
print("Cooking")
class (Father, Mother):
def (self):
print("I have multiple skills")
1\ J

« Multilevel Inheritance
« This is a basic case where we will have
« grandparent class — parent class — child class.
« The attributes and methods are passed on through all the
classes.

()
class :
def (self):

print("Heritage from Grandparent")

class ():

pass

class ()E

pass

Knowledge Orbit - Discover, Share, Evolve

Polymorphism

Polymorphism

« Polymorphism is a core concept in Object-Oriented Programming
(OOP). The word means "many forms" — and in programming, it
allows the same interface or method name to behave differently
depending on the object or context.

Types of Polymorphism

+ Polymorphism can be achieved in python in two ways well if we
talk about compile time languages there are 3 ways but python
does not support Method overloading.

+ Method overloading means having same name methods inside a
class but parameters will be different but in python the latest
definition will overwrite the previous one.

* Method Overriding
* This is where a child class overrides a method of the parent
class, and Python decides at runtime which method to call,
based on the object type.

-
class A
def (self):

print("Animal makes a sound")

class ():
def (self):
print("Dog barks")

Knowledge Orbit - Discover, Share, Evolve

« Duck Typing
« Python follows the philosophy:
“If it walks like a duck and quacks like a duck, it must be a
duck.”

(flass
def (self):
print(*Quack!")

class
def (self):
print("Hello!")

* In the speak() function, we don’t care if it's a Duck or a Human
— we only care that the object has a talk() method.

Knowledge Orbit - Discover, Share, Evolve

encapsulation

Encapsulation

« Encapsulation means putting data (variables) and code (functions)
together in one place — inside a class.

+ |t also means hiding the internal details of how things work, and
only showing what is needed.

- ¥ It keeps data safe from being changed by mistake.

- ™ It makes your code clean and easy to use.

- M It gives control over what others can access or change.

Access modifiers in python

+ Access modifiers means how we give access of our attributes
and methods to the object or inherited classes. There are 3 types
lets see them one by one.

* Public Attributes and Methods.
» Till now every attribute and methods we have created are
public means the inherited classes and objects can access
them no matter what.

« protected Attributes and Methods.

+ python protected members are created using a single
underscore but it still can be accessed from outside the
class so you might wonder whats the point of using them.

+ Python doesn’t enforce protected access like other
languages (e.g., Java or C++). But it uses a naming
convention to tell developers

Knowledge Orbit - Discover, Share, Evolve

* Private Attributes and Methods
« A private variable or method means:

It cannot be accessed from outside the class — only from

inside the class where it is defined.
* In Python, we use two underscores (__) before the name to
make it private.

-
class
def (self):
self.name = "Public Member" # Public
self._age = # Protected
self.__salary = # Private
def (self):
print("Inside the class:")
print("Public:", self.name)
print("Protected:", self._age)
print("Private:", self.__salary)
y

Knowledge Orbit - Discover, Share, Evolve

Abstraction

Abstraction

« Abstraction does not exist in python but we can achieve it using a
library we will see what is a library later.

+ Abstraction is used to simplifying complex systems by focusing
on essential features and hiding unnecessary details.

* |t is used to define a common interface for different subclasses.

Abstract classes and methods

» Abstract classes are classes that contains one or more abstract
methods.

+ A method that is defined but not implemented in the abstract
class. subclasses must provide the implementation.

()
from abc import ABC, abstractmethod
class (): # Abstract class
@abstractmethod
def (self): # Abstract method
pass
class ():
def (self):
print("Dog says Woof!")
class ():
def (self):
print("Cat says Meow!")
\ J

Knowledge Orbit - Discover, Share, Evolve

Dunder methods

What are Dunder methods

« Dunder methods are special methods in Python that start and
end with double underscores, like __init__, sitr , add_ , etc.
« They automatically get called when you perform certain actions
on an object.
« They help you:
« Customize behavior of your class
« Make your class objects behave like built-in data types (like
strings, lists, etc.)

-
class

def (self, name):
self.name = name

p = Person("Ravi')

print(p.name)
_

+ Now there are various dunder method see the video for some

examples.
* Now lets create a Bank management project using Oops in

python.

Knowledge Orbit - Discover, Share, Evolve

Advance stuff

Decorator

A decorator is just a function that modifies another function
without changing its actual code.

Imagine you have a cake (your function). A decorator is like
putting icing on the cake. It doesn’t change the cake itself, but
makes it better, prettier, or adds some new flavor!

For creating a decorator you first have 1o create a decorator
functions and then inside that we will create a wrapper.

Its tough to understand with text see the video.

()
def (func):

def ():
print("Something before the function runs.')
func()
print("Something after the function runs.")

return wrapper

@my_decorator
def ():
print("Hello!")

say_hello()
_ J

* For making the decorator with Arguments it is tough for this we
will move towards our next advance stuff *args , **kwargs.

Knowledge Orbit - Discover, Share, Evolve

Args and Kwargs

« They're special keywords in Python used in function definitions to
accept a flexible number of arguments.
+ Now you always don’t have to use Args and Kwargs the main
thing is *, ™ you can use any names in front of them.
« SO *args are used for multiple positional arguments, and **kwargs
are used for multiple key word arguments.
+ And the "args becomes a tuple and **kwargs becomes a
dictionary.
* The use case is great
* You don’t need to know how many inputs you'll get.
» Helps in building flexible functions, decorators, APIs, and
more.

(*args, skxkwargs):
print(, args)
print({ , kwargs)

fun(1l, 2, 3, name= , age=21)
G

Knowledge Orbit - Discover, Share, Evolve

List, Dictionary and set comphrehension

+ All of these Comprehensions are used to create List, Dictionary
and set. But you don’t have to use multiple lines of code for loops
and If-Else statements.

labels = [X % 2 == X range(5)]
['Even', 'Odd', 'Even', 'Odd', 'Even']

evens = {x: xkx X range(10) X % 2 == 0}

{0: @, 2: 4, 4: 16, 6: 36, 8: 64}

unique_even_squares = {xxkx X range(10) X % 2 == 0}
{0, 4, 16, 36, 64}

Lambda functions

« A lambda function is an anonymous, inline function defined using
the lambda keyword.

+ It's often used for short, simple functions that are used only once
or temporarily.

* You can have multiple arguments but there will be only one
expression.

Knowledge Orbit - Discover, Share, Evolve e

- Lets see a basic example:

square = lambda x: Xk
print(square(4)) # Output: 16

« The argument 4 is passed in X. you can also have multiple
arguments and you can also include If - Else expressions

check_even = lambda x: "Even" if x % == else "0dd"
print(check_even(7)) # Output: Odd

Map filter and zip

Map is used for applying a function 1o multiple items.
Takes a list (or any sequence)

Applies the same function to every item in that list

Gives you back a new list (in Python 3, it gives a map object
which you can convert to a list)

numbers = [1, 2, 3, 4]
doubled = map(lambda x: x * 2, numbers)
print(list(doubled)) # Output: [2, 4, 6, 8]

- Use map() when you want to transform every item in a list.
+ It doesn’t remove or skip items (that's what filter() does).
* You can use it with lambda or normal functions.

Knowledge Orbit - Discover, Share, Evolve

Filter as the name suggest is used to filter out the stuff.
Takes a list (or other sequence)
Checks each item using a function (a test)

Keeps only the items that pass the test (i.e., return True)

numbers = [1, 2, 3, 4, 5]
evens = filter(lambda x: x % 2 == 0, numbers)
print(list(evens)) # Output: [2, 4]

Modules and packages

Module is just a single file containing code and we can use this
file code in other file.
A single Python file (.py)
Contains functions, variables, or classes
Used to organize and reuse code
Python comes with lots of ready-to-use modules like:
- math (for math operations)
« random (for generating random numbers)
+ datetime (for date and time)

import math
print(math.sqrt(16)) # Output: 4.0

Knowledge Orbit - Discover, Share, Evolve .

- A package is a folder that contains one or more modules (Python
files). It may also contain sub-packages.

« and you just have to use from and import keywords to use these
things. You understood how these things work.

« There are third party packages as well like numpy, pandas,
matplotlib etc. and we have to install all of these.

« "And yes, we’ll be learning all of these and much more on this
channel. |, Akarsh Vyas, as a creator and representative of
Sheryians Al, would like to sincerely thank each and every one of
you who stayed with us till the end. You are truly precious to us.
Much love to all of you!"

Knowledge Orbit - Discover, Share, Evolve .

